Type: \(\displaystyle A^{1}_3\) (Dynkin type computed to be: \(\displaystyle A^{1}_3\))
Simple basis: 3 vectors: (1, 2, 2, 2, 2, 1, 1), (0, -1, 0, 0, 0, 0, 0), (0, 0, -1, 0, 0, 0, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_3
simple basis centralizer: 3 vectors: (0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 1, 0, 0)
Number of k-submodules of g: 31
Module decomposition, fundamental coords over k: \(\displaystyle V_{\omega_{1}+\omega_{3}}+6V_{\omega_{3}}+2V_{\omega_{2}}+6V_{\omega_{1}}+16V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, 0, -1, -1, -1)(0, 0, 0, 0, -1, -1, -1)g_{-19}-\varepsilon_{5}-\varepsilon_{6}
Module 21(0, 0, 0, 0, -1, 0, -1)(0, 0, 0, 0, -1, 0, -1)g_{-13}-\varepsilon_{5}-\varepsilon_{7}
Module 31(0, 0, 0, 0, -1, -1, 0)(0, 0, 0, 0, -1, -1, 0)g_{-12}-\varepsilon_{5}+\varepsilon_{7}
Module 41(0, 0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, 0, -1)g_{-7}-\varepsilon_{6}-\varepsilon_{7}
Module 51(0, 0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 0, -1, 0)g_{-6}-\varepsilon_{6}+\varepsilon_{7}
Module 61(0, 0, 0, 0, -1, 0, 0)(0, 0, 0, 0, -1, 0, 0)g_{-5}-\varepsilon_{5}+\varepsilon_{6}
Module 76(0, 0, -1, -2, -2, -1, -1)(1, 0, 0, 0, 0, 0, 0)g_{1}
g_{8}
g_{-40}
g_{14}
g_{-38}
g_{-36}
\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{3}-\varepsilon_{4}
Module 84(-1, -1, -1, -1, -2, -1, -1)(0, 0, 0, 1, 0, 0, 0)g_{4}
g_{10}
g_{15}
g_{-37}
\varepsilon_{4}-\varepsilon_{5}
\varepsilon_{3}-\varepsilon_{5}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
Module 91(0, 0, 0, 0, 1, 0, 0)(0, 0, 0, 0, 1, 0, 0)g_{5}\varepsilon_{5}-\varepsilon_{6}
Module 101(0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 1, 0)g_{6}\varepsilon_{6}-\varepsilon_{7}
Module 111(0, 0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 0, 1)g_{7}\varepsilon_{6}+\varepsilon_{7}
Module 124(-1, -1, -1, -1, -1, -1, -1)(0, 0, 0, 1, 1, 0, 0)g_{11}
g_{16}
g_{21}
g_{-34}
\varepsilon_{4}-\varepsilon_{6}
\varepsilon_{3}-\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{1}-\varepsilon_{6}
Module 131(0, 0, 0, 0, 1, 1, 0)(0, 0, 0, 0, 1, 1, 0)g_{12}\varepsilon_{5}-\varepsilon_{7}
Module 141(0, 0, 0, 0, 1, 0, 1)(0, 0, 0, 0, 1, 0, 1)g_{13}\varepsilon_{5}+\varepsilon_{7}
Module 154(-1, -1, -1, -1, -1, 0, -1)(0, 0, 0, 1, 1, 1, 0)g_{17}
g_{22}
g_{26}
g_{-31}
\varepsilon_{4}-\varepsilon_{7}
\varepsilon_{3}-\varepsilon_{7}
\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{1}-\varepsilon_{7}
Module 164(-1, -1, -1, -1, -1, -1, 0)(0, 0, 0, 1, 1, 0, 1)g_{18}
g_{23}
g_{27}
g_{-30}
\varepsilon_{4}+\varepsilon_{7}
\varepsilon_{3}+\varepsilon_{7}
\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{7}
Module 171(0, 0, 0, 0, 1, 1, 1)(0, 0, 0, 0, 1, 1, 1)g_{19}\varepsilon_{5}+\varepsilon_{6}
Module 184(0, 0, 0, -1, -2, -1, -1)(1, 1, 1, 1, 0, 0, 0)g_{20}
g_{-35}
g_{-33}
g_{-29}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{4}-\varepsilon_{5}
Module 194(-1, -1, -1, -1, -1, 0, 0)(0, 0, 0, 1, 1, 1, 1)g_{24}
g_{28}
g_{32}
g_{-25}
\varepsilon_{4}+\varepsilon_{6}
\varepsilon_{3}+\varepsilon_{6}
\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{6}
Module 204(0, 0, 0, -1, -1, -1, -1)(1, 1, 1, 1, 1, 0, 0)g_{25}
g_{-32}
g_{-28}
g_{-24}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{3}-\varepsilon_{6}
-\varepsilon_{4}-\varepsilon_{6}
Module 214(-1, -1, -1, -1, 0, 0, 0)(0, 0, 0, 1, 2, 1, 1)g_{29}
g_{33}
g_{35}
g_{-20}
\varepsilon_{4}+\varepsilon_{5}
\varepsilon_{3}+\varepsilon_{5}
\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{5}
Module 224(0, 0, 0, -1, -1, 0, -1)(1, 1, 1, 1, 1, 1, 0)g_{30}
g_{-27}
g_{-23}
g_{-18}
\varepsilon_{1}-\varepsilon_{7}
-\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{3}-\varepsilon_{7}
-\varepsilon_{4}-\varepsilon_{7}
Module 234(0, 0, 0, -1, -1, -1, 0)(1, 1, 1, 1, 1, 0, 1)g_{31}
g_{-26}
g_{-22}
g_{-17}
\varepsilon_{1}+\varepsilon_{7}
-\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{3}+\varepsilon_{7}
-\varepsilon_{4}+\varepsilon_{7}
Module 244(0, 0, 0, -1, -1, 0, 0)(1, 1, 1, 1, 1, 1, 1)g_{34}
g_{-21}
g_{-16}
g_{-11}
\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{6}
-\varepsilon_{4}+\varepsilon_{6}
Module 256(-1, 0, 0, 0, 0, 0, 0)(0, 0, 1, 2, 2, 1, 1)g_{36}
g_{38}
g_{-14}
g_{40}
g_{-8}
g_{-1}
\varepsilon_{3}+\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{2}
Module 264(0, 0, 0, -1, 0, 0, 0)(1, 1, 1, 1, 2, 1, 1)g_{37}
g_{-15}
g_{-10}
g_{-4}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{4}+\varepsilon_{5}
Module 2715(-1, -1, -1, -2, -2, -1, -1)(1, 1, 1, 2, 2, 1, 1)g_{39}
g_{-9}
g_{41}
g_{-3}
g_{-2}
g_{42}
-h_{3}
-h_{2}
h_{7}+h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-42}
g_{2}
g_{3}
g_{-41}
g_{9}
g_{-39}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{3}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{2}
0
0
0
-\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{2}-\varepsilon_{3}
\varepsilon_{3}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{3}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 281(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{4}+1/2h_{3}-1/2h_{1}0
Module 291(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{5}0
Module 301(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{6}0
Module 311(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{7}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 7
Heirs rejected due to not being maximally dominant: 16
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 16
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 1
Parabolically induced by A^{1}_2
Potential Dynkin type extensions: A^{1}_4, D^{1}_4, A^{1}_3+A^{1}_1,